A SHORT NOTE ON HOPF ALGEBROIDS: EXT AND
PRIMITIVES IN (TENSOR POWERS OF) THE
AUGMENTATION IDEAL

ABSTRACT. This is a short note on how to identify elements of Ext™ (A, A) as
primitive element in a quotient of the n-th tensor power of the augmentation
ideal I a Hopf algebroid (A,T"). One can thus understand Adams’s d— and
e— as well as Laures’s f—invariant this way. This concept is general, hence
applicable to hypothetical follow-up invariants.

Let (A,T) be a Hopf algebroid, such that I' is flat over A and let I denote the
augmentation ideal, i.e. the kernel of the augmentation

e:I'— A
Let (A,T) be connected, i.e € is an isomorphism in degree less than or equal to zero.
Theorem 1. We can realize the isomorphism
w: BExtpthi(A, A) — P(I®"HY)/ ~

as follows: For S € ExtP19(A, A) we construct ws := w(S) as a defect class of
the commutativity of the A-module splitting (p, A) and the I'-comodule action ¢ in
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Proof. I is a free A-module on (a priori) infinitely many generators (g;)ics. (This
means the cardinality of & may be infinite.)

A generator in I®" = I, ® --- ® I,,, where I}, just indicates the k-th copy of I in
the tensor product, is therefore a combination g;, ® --- ® g, for g;, € Ij.

Be aware that, since the Hopf algebroid (A,T") is connected, the degree of such a
gi, 1s positive.

Using Lemma [4 we can work with a short exact sequence S; of the form

(1) Spi: 19" %0 B g,

which is the image of our (n + 1)-extension € Extj:""9(A, A) under the sequence
of isomorphisms described in Lemma
Set 7 = ¢ —n. The second index r in Extllf(A7 I®™) requires

(2) deg(a) + deg(B) = —r.
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So if deg(a) = p, it follows that deg(8) = —(p + r). Remark that under each
sequence of I'-comodules there is an underlying sequence of A-modules, which in
the case of S; splits, since A is a free module of rank one over itself (and free implies
projective). We choose a splitting and call the splitting maps p and A.

So C has an A-module representation

where z; = a(h;) for generators h; = g;, ® -+ ® g;, of I®™ and y = \(1) for the
generator 1 of A.

Considering S and its splitting together with the natural I'-coactions of the objects
in S7 and the flatness of I' over A, we obtain the diagram in the theorem.

The I'-coaction of the generator y € C' is generally given by

voy) =1@y+ Y, ¢y,
[y |+1y" =yl

where y' € I C T and y” € C, such that 0 < |¢/|, |y"] < |y|.
By the commutativity of the right square in the diagram we see that

(1@p)(ely) =11

Therefore by exactness of the bottom short exact sequence we get

lop@ew)= >, vy

[y |+12" |=r

If we substitute z”” € I®™ by its representation Y a;h; in terms of generators h; of
I®" of suitable degrees, then

1®p)(c®) =D ¥ ® ajh;
= ZZy'-aj ® hy,
= ij ®hj

for w; =" y; - aj. Thus we obtain for the I'-coaction of y
(4) bely) =loy+ Y  wo;
lwjil+lz;1=lyl

Remark that ws = (1 ® p)(¥c(y)) is an element of I€"T! = [ @ [®" C T ® I®",
since y' € I and h; € I®". Since the I'-coaction of I®"*! is given by

¢]®7L+1 =Yr®1—-—1QYren
we calculate
Yrenti(ws) = Yr @ Hws) — 1@ Yren(ws)

—1e (Y wen)+> (Ywew))en - we (Y men).

By Lemma, [3| the two latter terms are equal, and hence wg € I®"*! is primitive.
So far this depends on the choice of splitting. Proposition 77 takes care of this
by specifying the necessary equivalence relation that one has to divide out.
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Conversely we see very easily that each primitive element w (representing its residue
class) induces a comodule structure on C' by

Yo(r:) = (1@ a)(Pren(hi))
Ye(y)=1ey+ (1o a)(w).

Lemma 2. The I'-coactions of h; € I®™ and z; € C are given by
Gron(h) =1@hi+ Y hi;j®h;
|ﬁ,i,j\i'\jhj\:k
(5) Yolz)=1®z;+ Y hi;j®z,
i 41 1=l
Proof. Suppose the degree of the generator h; € I®™ is k = |g;,|+---+]gi,|- Then

the general I'-coaction of h; looks like

Yren(hi) =1@hi+ Y hi@hy,
h’,,h’i’
\h,;\ﬁmg'\:k

where bl € I, hl! € I®™ and 0 < |h}|,|h}| < k. Further all 1} are of the following
form

(6) W= )0 ahy,
(L 1+ =k
which implies

bren(he) =1&@hi+ > hi© Y ahy
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=1@hi+ ) ST ha;ehy.
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(7) hij= Y h-q
L,
IR +1h =k
to obtain

Gron(h) =1@hi+ Y hi;®h;.
\ﬁi,ﬂi'\jh,w:k

By the commutativity of the left square of the diagram we now see that the I'-
coaction of the generators x; € C' is given by

1/10(-77@) =1z + Z Bi}j ® Tj.
\M,j|+ilgj\=|wi\
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Lemma 3.

S (X weu))en =3 we (> nen)

Proof. We use the coassociativity condition of )¢ applied to the generator y

(8) (Yr @ 1) ove(y) = (1@ o) o he(y).
Using we are able to calculate both sides as

(¢F®1)O1ﬁc(y):1®1®y+1®(ij®xj)+ij®1®xj+22w;®w}’®xj
and further using (5)) as

(1®¢C)°¢C(y):1®1®y+1®(ij®$j) +ij®(1®l'j+zﬁi,j®$i).
From equality it follows now that

Z (Zw; ®w;-’) Qzj = ij ® (ZEZ—J— ® ;).
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we see that applying (1 ® 1 ® p) to both sides of we get
S (X uwheuy)@n = 3w e (S hy@h),
And using @ and we see that the latter is

ij ® (Zﬁi,j ® hi) = ij ® (Zh; ® hj).

Thus we obtain

S (Y wjew))en =Y we (> o).

Lemma 4.
Extp b 9(A, A) =2 Extp 9™ (A, 1) = - = Bxtp?™ " (A, 1)
Proof. We consider the short exact sequence
ot 1o T I%m,

Applying the left exact functor Homrp (A, —) yields a long exact sequence, where
Exti (A, T @ I®™) 20 for n > 0, since T'® I®" is a relatively injective comodule,
even an extended one (cf Lemma A1.2.8 (b) in Ravenel '86). O
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Proposition 5. The equivalence relation ~ on the primitive elements in 1" of
Theorem |1| is given as follows:

w=> w;@hj ~ Y W;®h; =w
if and only if for all j there exist a; € A, such that
Y@ ®hy = wi@hi+ Y nu(a;)dren(hy) = Y nrla;) ©h.

Proof. When we say that the short exact sequence splits and use the A-module
representation of the I'-comodule C, we actually make a choice (p, A) of such

a splitting. We could obviously choose another splitting (p, A), i.e. A1) = § =
y + > a;xj, and since the I'-comodule structure of C' must not depend on the
chosen A-module splitting, the generators y and g should induce the same primitive
element w = w.

In general this will not be the case and hence we have to introduce an equivalence
relation on the group P(I®"*1) of primitive elements, such that w and w are in
the same residue class. This equivalence relation can be derived as follows.

With the same argumentation we used for y we see that y gives

bo) =107+ w; @,

for the coaction of . On the other hand we can use the representation ¥ = y +
> ajx; to compute

bo(@) =voly+ Y a; ® ;)
= ¢o(y) + Y ajte(r))
=1@y+ Y wi@x;+ Y no(a)tels;) + Y 1@nua)e; — > 1@ n(a;)z;
—1@g+Y w;@z;+ > nua)bo(z;) =Y nrlay) @ ;.

When we now apply (1 ® p) to ¥c(y) we get the following equation.

ST oh; =Y wi@hj+ > npla)vmen(h;) = > nrla;) @ hy.

Remark 1. For n = 0 this specializes to the well known result
Extp(4, 4) = P(E.E)y/ (1 — 1) (A,
since there is only one hj, the generator 1 € A, satisfying
Yreo(l) = ¢a(l) =nr(1) =1 1.

Remark 2. This is a short reminder about splitt short exact sequences.
A short exact sequence is called split, if the following diagram commutes

- T~

A N AN

A C B
e
A paa B
Yo (10) 7

This definition has the advantage that it is clear that the splitting maps (p, ) form a
short exact sequence by theirselves, since the other splitting is exact and the diagram
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is commutative. In particular we can construct for a given A\ with S o X = 1 the
corresponding map p and vice versa.

Splittings are not unique, we always have to choose a A, i.e. image y of \.



